Joint

Supplement to the "FURTHER DISCUSSIONS ON THE EFFECTS OF PHASE DIFFERENCE
ON THE H-ANTIGEN TRANSDUCTION IN SALMONELLA DIPHASIC STRAINS!

--- THE EFFECT OF PHASE-VARIATIONS IN THE TRANSFORMED CLONES ON THE YIELD
OF H-TRANSDUCED TYPES.

(July 28, 1955)

As has been reported already, the frequency of each type produced by the transduction of H_1 -or H_2 -factor is as follows,

The abternative types and their frequencies produced by the phase variation of these types are

- a = Rate of #//transformed, clones, which contain phase-2 cells produced by the phase variation during the course of the screening, to the total transformed phase-1 clones.
- b = Rate of transformed phase-2 clones, which contain phase-1 cells produced by the phase variation during the course of screening, to the total transformed phase-2 clones.

When antiserum for the H-antigens of the recipient cells are used as selective agents, type (1") and (2") are not detectable as well as type (3") and (4").

Thus, the expected ratio of phase-1 transduced type to phase-2 transduced type is

$$\ddot{\mathbf{H}}_1 : \ddot{\mathbf{H}}_2 = \mathbf{t}_1(\mathbf{r}_1 + \mathbf{b}\mathbf{r}_2) : \mathbf{t}_2(\mathbf{d}_2 + \mathbf{a}\mathbf{d}_1)$$
 (6).

The transduced types when donor, recipient or both contain only single phase are shown in Table 6. Table 6 indicates that, if phase-variation occur during the screening of the transduced types,

- (1). H2-transduced type will appear on the "1 # 1",
- (2). H1-transduced type will appear on the "2 -x 2",
- and (3). both transduced type will appear on the "1 -x 2", in addition to the types which appear when phase variations don't occur in the transformed clones; but
- (4). the ratio of H₁ to H₂ will not change by the phase-variation of transformed clone during the screening of transduced types, and express directly the ratio of the transduction efficiencies of H₁ and H₂.

 In other words, when phase-2 is used as donor and phase-1 as recipient, we can eliminate the influence of the phase-variations, which occur during the screening, on the yield of transduced type, and can discuss the transduction efficiencies directly from the number of each transduced type.

The results of H-transduction between diphasic strains, expected from the proposed hypothesis when selected by the antiserum for the antigen of the recipients. ---(2) The expected results when phase-variations occur

Table 6.

during the screening of the transduced types.

Phase of donor	Phase of recipient			occur in the transformed clones)	
		H ₁ :	H ₂	H ₁ :	H ₂
1 & 2	1 & 2	t 1(r 1+b r 2)	$\mathbf{t}_2(\mathbf{d}_2 + \mathbf{ad}_1)$	t 1 r 1	^t 2 ^d 2
1	1 & 2	t ₁ (r ₁ +br ₂)	at2	*1*1	0
2	1 & 2	t ₁ (r ₁ +br ₂)	t ₂	*1*1	t 2
1 & 2	1	t 1	$\mathbf{t_2}^{(\mathbf{d_2+ad_1})}$	t ₁	^t 2 ^d 2
1 & 2	2	btz	$t_2(d2+ad_1)$	0	*2 ^d 2
1	1	t _l	at ₂	^t 1	0
1	2	bt ₁	at ₂	0	•
2	ı	t ₁	‡ 2	t ₁	^t 2
2	2	bt ₁	t ₂	0	t ₂